Transgenic expression of BACH1 transcription factor results in megakaryocytic impairment.

نویسندگان

  • Tsutomu Toki
  • Fumiki Katsuoka
  • Rika Kanezaki
  • Gang Xu
  • Hidekachi Kurotaki
  • Jiying Sun
  • Takuya Kamio
  • Seiji Watanabe
  • Satoru Tandai
  • Kiminori Terui
  • Soroku Yagihashi
  • Norio Komatsu
  • Kazuhiko Igarashi
  • Masayuki Yamamoto
  • Etsuro Ito
چکیده

Both nuclear factor erythroid 2 45 kDa subunit (p45) and BTB and CNC homolog 1 (Bach) transcription factors can form dimers with one of the small Maf proteins, and these heterodimers bind to the musculoaponeurotic fibrosarcoma oncogene (Maf) recognition element (MARE). MARE is known to act as a critical cis-regulatory element of erythroid and megakaryocytic genes. Although detailed analyses of p45-null mutant mice and small maf compound mutant mice revealed that these factors are both critical for platelet production, the functional contributions of Bach1 and the relationship or redundancy between Bach1 and p45 in megakaryocytes remain to be clarified. To address these issues, we generated transgenic lines of mice bearing human BACH1 cDNA under the control of the GATA-1 locus hematopoietic regulatory domain. The transgenic mouse lines showed significant thrombocytopenia associated with impaired maturation of the megakaryocytes, and they developed myelofibrosis. The megakaryocytes in the transgenic mice exhibited reduced proplatelet formation, and the modal ploidy class of megakaryocytes was 2N, indicating the impairment of endomitosis. Transcription of the p45 target genes was down-regulated and we indeed found that BACH1 binds to the thromboxane synthase gene, one of the target genes for p45 in megakaryocytes. These findings thus provide evidence that BACH1 acts as a transcriptional repressor in the regulation of MARE-dependent genes in megakaryocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice

Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...

متن کامل

Bach1 deficiency protects pancreatic β-cells from oxidative stress injury.

BTB and CNC homology 1 (Bach1) is a transcriptional repressor of antioxidative enzymes, such as heme oxygenase-1 (HO-1). Oxidative stress is reportedly involved in insulin secretion impairment and obesity-associated insulin resistance. However, the role of Bach1 in the development of diabetes is unclear. HO-1 expression in the liver, white adipose tissue, and pancreatic islets was markedly upre...

متن کامل

Long range interaction of cis-DNA elements mediated by architectural transcription factor Bach1.

BACKGROUND A central question in vertebrate transcriptional regulation is how cis-regulatory modules, including enhancers, silencers and promoters, communicate with each other over long distances to mandate proper gene expression. In order to address this question we analysed protein/DNA interactions in the human beta-globin locus control region (LCR). One of the many proteins that are potentia...

متن کامل

Heme induces ubiquitination and degradation of the transcription factor Bach1.

The transcription repressor Bach1 is a sensor and effector of heme that regulates the expression of heme oxygenase 1 and globin genes. Heme binds to Bach1, inhibiting its DNA binding activity and inducing its nuclear export. We found that hemin further induced the degradation of endogenous Bach1 in NIH 3T3 cells, murine embryonic fibroblasts, and murine erythroleukemia cells. In contrast, succi...

متن کامل

Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1

Oxidative stress activates the transcription factor NRF2, which in turn binds cis-acting antioxidant response element (ARE) enhancers and induces expression of protective antioxidant genes. In contrast, the transcriptional repressor BACH1 binds ARE-like enhancers in cells naïve to oxidative stress and antagonizes NRF2 binding until it becomes inactivated by pro-oxidants. Here, we describe the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 105 8  شماره 

صفحات  -

تاریخ انتشار 2005